STE Studies using AIRS Data

Laura Pan, NCAR

NCAR

Collaborators:

- Andrew Gettelman and Bill Randel (NCAR)
- Chris Barnet and Jennifer Wei (NOAA, NESDIS)
- Bill Irion (JPL)
- Mel Shapiro (NOAA/NCAR)
- Ken Bowman (Texas A&M)
- Owen Cooper (NOAA/CMDL)
- Ed Browell (NASA/Langley)
- Rushan Gao (NOAA/AL)
- Hongbin Chen and Jianchun Bian (IAP/CAS, Beijing China)
- Greg Bodeker (NIWA, New Zealand)
- Kathleen Monahan and Adrian McDonald (Univ. Canterbury, New Zealand)

Upper Troposphere & Lower Stratosphere – A region of coupled dynamics, chemistry and cloud microphysics

Scientific Motivations

Challenges of quantifying STE of chemical tracers (ozone, water vapor, and more)

- When seasonality,
- Where- preferred locations,
- How the controlling processes,
- How much e.g. how much does STE contribute to the UT ozone and LS water vapor?

Initial results

- Validation analyses of AIRS UTLS ozone
- Diagnosing STE using AIRS ozone and water vapor data

AIRS Ozone on 250 hPa (in 1x1 degree average)

Monthly mean May, 2004

AIRS Ozone Cross Section (1x1 degree average)

Is AIRS ozone data meaningful, especially in the tropopause region?

Case studies using aircraft data:

- In situ, NOAA G4 Hawaii, Feb 2004
- LIDAR NASA DC8 PAVE, Jan 2005
- In situ NASA WB57 AVE Houston, Nov 2004
- In situ NSF G5, START, Dec 2005

Statistical comparisons using ozonesondes

- Beijing, China
- Lauder, New Zealand

Case 1: NOAA G4, Hawaii Feb 2004

NH cross-sections Feb 29, 2004 GIV measurements Feb 29, 2004

Case 2: NASA WB57 AVE mission Houston, Nov 2004 (black line is the flight track, AIRS cross section on right)

The agreement between AIRS and in situ between 50-500 ppb is remarkable

Case 3: NASA Langley DIAL, DC-8 PAVE Jan 2005

Stratosphere-Troposphere Analyses of Regional Transport (START) Experiment

Investigators:

Laura Pan (PI, ACD/TIIMES)
Ken Bowman (Texas A&M)
Mel Shapiro (NOAA/NCARMMM)
Bill Randel (ACD)
Rushan Gao (NOAA)
Teresa Campos (ACD/EOL)
Chris Davis (MMM)
Sue Schauffler (ACD)

Collaborators:

Chris Barnet Jennifer Wei (NOAA/NESDIS Satellite data)

Case 4: START Flight 2 (2005-12-07)

Planned 1st Flight Nov 23, 2005

Comparisons with ozonesondes over Beijing

- Work of J. Bian and H. Chen (in colaboration with NCAR group)
- Data from Sept 2002 July 2005, over 70 profiles
- Examples and statistics

Statistics of 70+ Pairs

Comparisons with ozonesondes over Lauder

- Work of K. Monahan (Canterbury U. NZ)
- Data from December 2004 November 2005, 48 profiles

0-1.5 ppmv range (UTLS)

Summary of Validation Analyses

- High degree of consistency with dynamical variability of UTLS
- Realistically map chemical transitions between stratosphere and troposphere
- Show reasonable agreement with aircraft data over a large dynamical range of ozone
- Initial comparisons with ozonesonde show good agreement between 400-50 hPa range
- Both aircraft and sonde comparisons show AIRS ozone data have a tendency of positive bias in the upper troposphere

Unique Strength of AIRS Ozone Data

- High spatial density of sampling -> mapping dynamical variability of UTLS chemical distribution
- Good vertical resolution near the tropopause -> dynamical processes control STE
- Ozone and water vapor -> pair of tracers for diagnosing mixing

Diagnosis of STE

- The use of global satellite (AIRS) ozone and water vapor data for STE studies – where is the preferred mixing location and what controls mixing?
- Chemical transition across the tropopause using tracer-tracer correlations

Chemical Transition from Tracer-Tracer Correlations

[Pan et al., 2004]

ER-2 data O_3-H_2O (POLARIS)

AIRS O_3 - H_2 O May 15, 2004, 65N

Are these "mixing" points physically meaningful or merely the "smearing" of the retrieval?

AIRS 20040515, "Deep Mixing"

diagnosis from O_3-H_2O

2,3,4,5 km below TP

3,4,5,6 km mixing depth

AIRS data analyses

CLaMS simulations

Diagnosing the Preferred Locations of STE Flux

ERA15 clim.

PV "eddies" 200hPa, May 2004

AIRS "Deep Mixing"
May 2004

Sprenger and Wernli 2003 (JGR)

Work in Progress

- Validation papers in progress using in situ and sondes
- More validation comparisons with GV data
- Chemical transition across the tropopause using tracer-tracer correlations
- Comparisons with CCM's & CTMs

